Chapter 5

Synaptic Interactions In a Passive
Dendritic Tree

Nerve cells are the targets of many thousands of excitatory and inhibitory synapses. An ex-
treme case are the Purkinje cells in the primate cerebellum, receiving between one and two
hundred thousand synapses onto dendritic spines from an equal number of parallel fibers
(Braitenberg and Atwood, 1958; Llinds and Walton, 1990). In fact, this structure has a
crystalline-like quality to it, with each parallel fiber making exactly one synapse onto a spine
of a Purkinje cell. For neocortical pyramidal cells, the total number of afferent synapses
is about an order of magnitude lower (Larkman, 1991). These number need to be com-
pared against the connectivity in the central processing unit (CPU) of modern computers,
where the gate of a typical transistor usually receives input from one, two or three other
transistors or connects to one, two or three other transistor gates!. The large number of
synapses converging onto a single cell provide the nervous system with a rich substratum for
implementing a very large class of linear and nonlinear neuronal operations. As we discussed
in the introductory chapter, it is only these latter ones, such as multiplication or a thresh-
old operation which are responsible for “computing” in the nontrivial sense of information
processing.

It therefore becomes crucial to study the nature of the interaction among two or more
synaptic inputs located in the dendritic tree. Here, we restrict ourselves to passive dendritic
trees, that is to dendrites that do not contain voltage-dependent membrane conductances.
While such an assumption seemed reasonable twenty or even ten years ago, we now know that
the dendritic trees of many, if not of most, cells contain significant nonlinearities, including

!The reason for this very small fan-in and fan-out is that each additional gate whose parasitic capacitance
needs to be charged up increases the signal propagation delay between consecutive stages, slowing down how
fast the clock can operate. Since the clock speed is one of the most important determinants of performance
of the final chip, convergence as well as divergence is kept to a minimum. The situation is quite different
for random access memory circuits. For example, in a 64 Mbit DRAM (Dynamic Random Access Memory),
the fan-in and fan-out associated with the switching transistor at each memory location is approximately
8192. The time taken to charge the large interconnect capacitance that dominates these circuits is reduced
through the use of regenerative amplifiers and buffers.
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the ability to generate fast or slow all-or-none electrical events, so-called dendritic spikes.
Indeed, truly passive dendrites may be the exception rather than the rule in the nervous
system. We will take up the theme of active dendrites and outline their putative role in
computation in chapter 19.

The voltage change in a passive tree in response to two or more current injections is given
by the sum of the voltages induced by the individual current inputs. This linearity between
current and voltage is expressed in the cable equation 2.7 and is the basis for using input-
and transfer impedances to completely charter the behavior of this system. In the absence of
any nonlinearity, no true information processing operations can occur. However, as we keep
on emphasizing, a synaptic input acts to a change the membrane conductance (in series with
a battery), implying that the change in membrane voltage caused by two or more synaptic
inputs is not the sum of the voltages induced by the individual synaptic inputs. It has not
escaped the attention of theoretician that this nonlinearity could be used to implement a
type of multiplication (Blomfield, 1974; Srinivasan and Bernard, 1976; Poggio and Torre,
1978, 1981; Torre and Poggio, 1978).

In the following section, we describe the nonlinear interaction between excitation and
inhibition which has received particular scrutiny in the literature. In the second part of
this chapter, we focus on the multiplicative-like interaction among large number of voltage-
dependent NMDA synaptic inputs. The example discussed here is the most plausible instance
of a higher-level operation, in this case storing and discriminating complex patterns, imple-
mented using a biophysically very detailed model of a nerve cell. The last section focuses on
the important topic of synaptic microcircuits (Shepherd, 1972, 1978), that is very small and
specific arrangements of synapses between particular neurons. Such microcircuits usually in-
volve so-called dendro-dendritic synapses among two dendrites and are thought to subserve
very specific computations.

5.1 Nonlinear Interaction Among Excitation and Inhi-
bition

In section 1.5, we studied this interaction for the membrane patch model. With the addition
of the dendritic tree, the nervous system has many more degrees of freedom to make use of
and the strength of the interaction depends on the relative spatial positioning as we will see
now. That this can be put to good use by the nervous system is shown by the following
experimental observation and simple model.

5.1.1 Absolute versus Relative Suppression

For an animal, it is often necessary to completely suppress certain behaviors, while under
other conditions the threshold for initiating a behavior should only be elevated but not
prevented altogether. Vu and Kranse (1992) study how these two operations can be imple-
mented in the same neuron for the tail-flip escape response in the crayfish. Here, as indeed
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in any other animal, during the execution of the escape reflex propelling the animal away
from a potential dangerous situation, no additional escape behavior should be initiated. The
neuronal influence responsible for this absolute suppression is called recurrent inhibition.
While the crayfish is feeding or otherwise engaged, the escape reflex becomes more difficult
to initiate. This suppressive influence, termed tonic inhibition, can be overridden in the
presence of a strong enough stimulus.

The escape response is mediated by a pair of lateral giant command neurons (LG). On
the basis of intracellular recordings, Vu and Krasne (1992; see also Vu, Lee and Krasne,
1993) correlate these two types of suppression with distal (tonic inhibition) and proximal
(recurrent inhibition) inhibitory inputs onto the dendritic tree of the LG cell (Fig. 5.1B).
Since it is know that the excitation mediating the escape reflex is distal from the spike-
initiating zone, Vu and his colleagues use the two compartment circuits shown in Fig. 5.1A
to model the two forms of inhibition (here by assuming that the GABA-mediated inhibition
is of the silent or shunting type with E; =0). In both cases, excitation is spatially removed
from the output of the circuit. For “proximal inhibition”, the inhibitory conductance change
is located at the output (close to the soma), while for “distal inhibition”, excitation and
inhibition are both co-localized in the distal compartment. Vu and Krasne point out that
in the former case, inhibition always reduces the EPSP by some amount, no matter what
the amount of excitation. This, they argue, is the manifestation of absolute suppression in
the sense that no matter what the excitation, the EPSP—and therefore the behavior—will
be suppressed. Quite a different behavior is observed for “distal inhibition:” any amount of
inhibition can always be overcome by more excitation, i.e. the system demonstrates relative
suppression. They argue that any behavior that needs to be suppressed no matter what the
circumstances should use synaptic inhibition that is close to the soma (absolute suppression).
Conversely, if the threshold for initiating a behavior needs to be elevated—without abolishing
it altogether—distal synaptic inhibition is required.

Let us follow Vu and Krasne (1992) and reduce the neuron to but two compartments, one
proximal and one distal to the spike initiation zone. To understand the principle of the spatial
interaction we will further assume that the time course of synaptic input is slow compared
to the membrane time constant and that inhibition is of the shunting type (i.e. E; =0).
Let us first analyze the case when inhibition is proximal, here in the somatic compartment
(left side of Fig. 5.1A). Following Kirchhoff’s current law that stipulates that the sum of all
currents flowing into a node must be zero we can write down for the compartment proximal
or close to the spike triggering zone

0-1,) , (Va=V)

0—-V,))g =0, 5.1
( p)g + Rp RC ( )
and for the dendritic compartment
0—-V, V, =V,
(Ee — Va)ge + ( ) + 0p=Va) _ 0. (5.2)

R, R.

After a few algebraic manipulations, we arrive at an expression for the proximal depolariza-
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Figure 5.1: RELATIVE VERSUS ABSOLUTE SUPPRESSION
An important distinction exists between inhibition that can partially suppress an excitatory input
(relative suppression) versus inhibitory input that can’t be overridden by excitation, no matter what
its amplitude (absolute suppression). These different types of inhibition were demonstrated by Vu
and Krasne (1992) in the case of the tail-flip escape behavior in the crayfish. Two circuits that em-
phasize the relative placement of excitation (with an associated conductance change g, in series with
E. =100 mV) in the periphery and shunting inhibition (of amplitude g; and E; =0) in either the
proximal (A) or the distal compartment (B) (see egs. 5.3 and 5.5 resp.). The curves were generated
using a variable amount of inhibition (0, 0.2, 0.5, 1, 2 and 5 from top to bottom in units of g.Ry).
No matter how large the excitatory input, proximal inhibition can reduce the peak potential in a
graded manner (absolute suppression). This is not true if excitation and inhibition are co-localized,
where excitation can always overcome the inhibition, providing a substrate for relative suppression.
(C) Part of the neurobiological circuitry underlying the escape reflex. Excitatory inputs onto the
dendrites of the lateral giant command neuron (LG) mediate the reflex. It can be partially sup-
pressed by so-called tonic inhibition (TT), that is inferred to be in the distal dendritic tree. The
escape reflex can be completely abolished by recurrent inhibition (RI) that is thought to synapse
close to the spike trigger zone. SIZ demarcates the spike initiating zone. (D) Another prediction
concerns the relative amount of attenuation (the F' factor of eq. 5.14) for small (i.e. small g, value;
solid bars) and large (large value of g.; open bars) EPSPs for distal inhibition. The model predicts
that smaller EPSPs should be associated with a larger reduction (larger F' values) than larger EP-
QP<s ags born o1t bv the data shown here from eicht diferent animale For proximal inhibition the F
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tion

EegeRdRp
R+ Ri+ Ry + g.(R4Ry + RqR. + g;RaRyR.) + gi(R4R, + R,R.)
The amplitude of the EPSP as a function of g, for various settings of inhibition is plotted in
Fig. 5.1A. What is apparent is that a fixed amout of inhibition at the output, 7.e. the soma,
can reduce the EPSP amplitude, no matter what the level of excitation g.. This absolute
dependency on g; readily becomes apparent in the limit of large excitatory inputs

. E'eRp
ge =700 (Rp + R, + giRcRp) .

v, = (5.3)

(5.4)

Repeating the same analysis for the case that excitation and inhibition are co-localized in
the distal compartment leads to

EegeRde
Vo= : (5.5)
Re+ Rq+ Ry + ge(Ry,Rq + RqR.) + gi(RyRq + R4R,)
Although similar to eq. 5.3, a crucial difference emerges in the limit
Ee
lim 1, = el (5.6)

ge—>00 Rp + RC_ .

For any fixed level of inhibition, excitation can always override its effect (relative inhibition;
right panel in Fig. 5.1A). If excitation and inhibition are not located close to each other,
things are different since the local potential saturates at E,, placing a cap on the amount of
current the excitatory input can deliver to the soma. Because of this saturation, inhibition
will always be able to reduce the total amount of current delivered to the soma. This would
not be true if the synaptic input were to behave as a constant current source, since for
ge — 00, an infinite amount of depolarizing current would flow to the soma, dominating any
loss of current via inhibitory synapses.

5.1.2 General Analysis of Synaptic Interaction in a Passive Tree

Above, we have seen how treating a neuron as more than a single spatial compartment
enhances its computational power. Let us now treat the general case of the nonlinear synaptic
interaction in a complex dendritic tree using the two-port analysis developed in chapter 3
(Koch et al., 1982).

A word of warning. The theory developed here assumes that the cell operates in its
subthreshold domain, where no action potentials are generated. As discussed more fully
in chapter 18, modeling the effect of synaptic interaction on a cell’s firing rate can yield
surprising results quite different from those in the subthreshold domain (Holt and Koch,
1997) and so care must be taken into extending any results without much thought to the
suprathreshold domain.

We assume a constant, excitatory input at location e (of amplitude g. > 0 and battery
E. > 0) and a constant inhibitory conductance change at location i (of amplitude g; > 0
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Figure 5.2: INTERACTION AMONG AN EXCITATORY AND AN INHIBITORY SYNAPSE
How does the interaction between an excitatory synapse (at location e) and an inhibitory synapse
(at 7) in a passive dendritic tree depend on their spatial position? And what role does the synaptic
architecture and dendritic morphology play? In general, the potential at the soma (s) is not simply
the sum of the individual IPSP and EPSP but can be much less. If the inhibition is of the shunting
type, with a reversal potential close to the resting potential of the cell, inhibition by itself leads to no
significant potential change while still being able to veto the EPSP, as long as the inhibitory synapse
is either close to the excitatory one or “on the direct path” between excitation and the soma s
(lightly shaded area). The effectiveness of shunting inhibition drops substantially outside this zone.

and battery F; < 0; see Fig. 5.2). We neglect the time-dependent aspects of this problem, a
simplification that allows us to use the input and transfer resistances described in section 3.4,
expressing the change in membrane potential as the sum of the currents contributed by the
two synapses. At synapse e the synaptic current I, = g.(E, — V;) will flow, and at location
i the current I; = g;(E; — V;). The composite post-synaptic potential at location e is given
by the synaptic current at e multiplied by the input resistance K., plus the synaptic current
at ¢ times the transfer resistance between 7 and e, f(ei:

V;z — kee]—e + kei]—i ) (57)

or,

Vi, = Keoge(Ee — V,) + Koigi(E; — V) . (5.8)
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Likewise, for the voltage change at location ¢ we have
Vi = Keige(Be — Vo) + Kugi(Ei = Vi) , (5.9)

where we exploit the symmetry property K. = K.;. Finally, the potential at the soma is
given by . .
Vvs - Kesge(Ee - V;z) + Kzsgz(Ez - V;) . (510)

Notice that the voltage is always specified as the product of the appropriate input or transfer
resistance and the synaptic current and that the input and transfer resistances are computed
in the absence of any synaptic input. Solving these three algebraic equations is straightfor-
ward, resulting in the following expression for the somatic potential

geEe(kes + gzk:) + ngz(kzs + geKz—l_)
1+ geKee + i K + gegi K*

Ve = , (5.11)
with

K& = KiK., —K.K;
K;_ = Keusz f{zsf{
K* = K.K;—K2.

Whether or not the somatic potential is positive or negative, that is whether it corresponds
to an EPSP or to an IPSP, depends on the relative magnitude of the two contributions.

In order to arrive at a qualitative picture of the behavior of the system, let us assume
that the conductance inputs ¢g. and ¢; are small, such that geKee < 1 gZK” < 1, and
gegiK* < 1, and that higher than second-order terms in g, and g; can be neglected (e.g.,
g2 ~ 0 and g.g? ~ 0, etc.). Similarly to eq. 4.14, we can use the Taylor series expansion of
eq. 5.11 to arrive at

‘/S k [geEe gekee(geEe) - gekze(ngz)]
+Kzs [ng gszz(ng) - giKie(geEe)] (5~12)

~ K [I +Iee+[ez] +Kzs[[z+Izz+Ize]

Q

The three components in the first bracket are a short-hand version of the currents flowing at
locations e that are propagated to the cell body, and the three currents in the second bracket
are propagated from the site of inhibition to the soma. I, is the current generated under
the assumption that the driving potential remains unperturbed (i.e. F, —V, ~ E.). I
“corrects” the first term by approximating the driving potential as the difference between E,
and the voltage change K cefeFle associated with the first term. I,; results from the interaction
between the two synapses. It can be interpreted as follows: the first-order approximation to
the inhibitory current is g; F;, causing an IPSP at e of amplitude f(iegiEi which will affect the
driving potential at e. The appropriate correction current is given by the IPSP multiplied
by the local conductance change —9.K;eq:E;. By analogy, the currents at the site of the
inhibition can likewise be explained by the superposition of a zero-order current plus the
first two correction currents.
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5.1.3 Location of the Inhibitory Synapse

So far, we did not discuss any specific spatial arrangements between excitation and inhibi-
tion. We are interested in finding the location where synaptic inhibition can be maximally
effective in reducing the amplitude of the excitatory input. Specifically, given an excitatory
synapse (of amplitude g, and battery E,) at location e, where should the inhibitory synapse
(of amplitude g; and battery E;) be located such that it maximally reduces the EPSP? This
question was the subject of an investigation into the relationship between synaptic architec-
ture and dendritic morphology (Koch et al., 1982, 1983). It is tedious, but straightforward
(Koch, 1982) to prove the following:

On-the-path theorem. For arbitrary values of g > 0,9; > 0, E. > 0 and
E; < 0, the location where inhibition is mazimally effective is always on the
direct path from the location of the excitatory synapse to the soma (Fig. 5.2).

Where exactly the optimal location is on this path depends on the details of the system
and can shift from the location of the excitatory synapse to somewhere on the path to the
cell body. As inhibition is moved towards the soma, its specificity decreases, since the same
inhibition now not only reduces the EPSP coming from synapse e but also the EPSPs from
pther locations. This is most pronounced at the soma, where an excitatory input anywhere in
the dendritic tree will be attenuated. Thus, mapping synaptic architecture onto the dendritic
morphology can give rise to different classes of computations.

Three useful properties concerning the optimal location of inhibition (see also Jack et al.,
1975; Rall, 1967, 1970) that are valid for stationary conductance inputs in arbitrary, passive
dendritic trees are:

(i) For small synaptic inputs g, and g;, the most relevant parameter is the distance between
the two synapses. It makes only little difference whether inhibition is behind (with
respect to the cell body) excitation or on the path. The strength of the interaction
among synapses decreases as the amplitudes of the conductance changes are decreased.

ii) As g, increases while g; remains constant, the optimal location of inhibition moves
g g
along the direct path towards the soma.

(iii) For very large excitatory inputs (g. — 00), all inhibitory synapses located behind the
excitatory synapse are completely ineffective.

These properties are a direct consequence of eq. 5.11, the fact that there exists an unique
path between any two points in a dendritic tree, and properties of the transfer resistances
(section 3.4).

Experimental verification of the specific nature of synaptic inhibition comes from a study
by Skydsgaard and Hounsgaard (1994) carried out on the large dendritic arbor of motoneu-
rons. Using three independent electrodes that can release either glutamate or GABA (so-
called iontophoresis electrodes) as well as a fourth recording electrode at the cell body, they
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showed in ten out of twelve experiments a spatially specific reduction in the glutamate-
induced excitatory response. In other words, the shunting action of GABA was primarily
effective in reducing the excitatory action of glutamate when the two iontophoresis elec-
trodes were close to each other. No or little effect was observed on the response due to
a more distal glutamate-releasing electrode. This constitutes prima facie evidence for the
spatial selectivity of shunting inhibition.

5.1.4 Shunting Inhibition Implements a “Dirty” Multiplication

Let us consider the specific case when inhibition has a reversal potential close or equal to
the resting potential of the cell. The GABA, mediated increase in chloride conductance
approximates such a shunting inhibition. In this case, the nonlinear interaction between
excitation and inhibition is the most pronounced, because activation of silent inhibition by
itself does not cause any change in potential (hence its proper—but rarely used—mname of
silent inhibition), while inhibition during synaptic excitation can greatly reduce the EPSP.
For small enough inputs eq. 5.11 reduces to

‘/L-s ~ Ee [gekes - gzkeekes - gegikeikis] . (513)

Here the somatic potential is given by two terms in ¢, in addition to a cross-term involving
a multiplicative interaction between g, and g;. Conceptually, one can think of this as a dirty
or approrimate multiplication between two synaptic inputs g, and g;, with the value of the
offset (gef(es — gff(eekes) depending in a nonlinear manner on one of the inputs (Poggio and
Torre, 1978).

In order to quantify the effectiveness of shunting inhibition, Koch and colleagues (1982)
introduced the F' factor as the ratio of the somatic EPSP in the absence of any inhibition
to the somatic EPSP in the presence of inhibition; the larger this number the stronger the
effect of inhibition. On the basis of eq. 5.11 this can be expressed as

_ geKes . 1+ gekee + gzkzz + gegik*
1 + geKee geKes + gegiK(j_

, (5.14)

where K = 0 for inhibition located on the path between e and s. A large F value describes
an effective inhibition, 1/F indicating the relative decrease of the somatic EPSP by inhibi-
tion. As expected, F' > 1 for all cases. Table 5.1 illustrates some typical F' values obtained
in a numerical simulation of the effect of inhibition in a retinal ganglion cell responding to
a single excitatory input at location 1 (Fig. 5.3A). Let us summarize these results.

The Effectiveness of Shunting Inhibition

(i) For small synaptic inputs the on-the-path effect is weak and the strength of the in-
teraction depends mainly on the distance between excitation and inhibition. Under
these conditions, all locations close to the excitatory synapse are equally effective in
reducing excitation.
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Figure 5.3: SPATIO-TEMPORAL SPECIFICITY OF SYNAPTIC INTERACTION
The effectiveness of shunting inhibition (E; = V,es) in vetoing an EPSP in a retinal ganglion
cell. (A) Excitation is always at location 1, while the position of the inhibitory synapse varies.
The cell’s morphology was reconstructed based on Golgi material from Wassle, Illing, and Peichl
(1979). (B) The time-course of the excitatory and the inhibitory conductance changes reflect
the slow retinal dynamics (Baylor and Fettiplace, 1979), with identical time courses but different
peak conductance changes (10 nS for excitation and 100 nS for inhibition). (C) The F' factor,
i.e. the reduction in the peak somatic EPSP due to inhibition, as a function of the delay be-
tween the onset of g.(t) and g;(¢). The strength of the interaction (see also Table 5.1), is specific
in space and in time. This result holds over a large parameter range. In particular, R, (here
set to 14,000 Qcm?) can be increased over several orders of magnitude. From Koch et al. (1983).

(ii) If the two synapses coincide anywhere in the dendritic tree (i = ¢e), F reduces to

F=14-020 (5.15)
1+ geKii
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Inhibition | g, 1 1 1 10
at location | g; 1 10 100 | 100
3 1.16 | 2.06 | 3.43|1.96
1 1.17 1270 | 1.80 | 7.72
2 1.14 | 2.40 | 15.00 | 8.72
4 1.12 | 1.72 | 247 | 1.87
5 1.08 | 1.46| 1.84 | 1.62
S 1.11 | 2.06 | 11.57 | 9.18

Table 5.1: EFFECTIVENESS OF SHUNTING INHIBITION

F' values, describing the effectiveness of shunting inhibition in reducing a somatic EPSP, for sta-

tionary synaptic inputs in the retinal ganglion cell of Fig. 5.3A. The excitatory synaptic input

ge (with E, =80 mV relative to V,es) is always at location 1, while inhibition g; is either lo-

cated behind excitation (3), at the same location as excitation (1), between excitation and the
soma (2), in an branch just off the path (4), in a very different part of the tree (5) or at the

soma (s). The amplitude of g, and g; are in nS. The somatic EPSP in the absence of any in-
hibition for g, =1 nS is 6.56 mV. R,,, = 14,000 Qcm? and R; = 70 Qcm. From Koch (1982).

(iii)

This is also the F' factor obtained when dealing with a patch of passive membrane in the
presence of two synapses (if we identify R with R'”) The difference between eqs. 5.14
and 1.34 (or 5.15) is due spatially distributed tree. As discussed in section 5.1.1,
excitation can always overcome the effect of fixed but large inhibition.

If the amplitude of inhibition is above a critical value (about 50 nS in the case of the
retinal ganglion cell simulation; Koch et al., 1983), F' values can be quite high (2-8),
even if the excitatory input is much larger than the inhibitory one, as long as the
inhibition is between excitation and the soma. Comparing this against the F' factor
obtained in a lumped circuit model (eq. 5.15), we ascertain that these high F' values are
due to the cable properties of the tree. Inhibition behind excitation or on a neighboring
branch (about 10 or 20 um for the retinal ganglion cell considered here) off the direct
path is ineffective in reducing excitation significantly.

The specificity for high values of g; persists even for very large values of the membrane
resistivity, when the cell is relatively compact (in terms of electrotonic distance or
in terms of the logarithm of the voltage attenuation LY). For instance, for R,, =
1 MQcm?, the electrotonic size of the ganglion cell in Fig. 5.3A shrinks to 0.03\ and
its input resistances increase to over 1 G{2. Yet for g. =10 nS and g; =100 nS, we
obtain F' =10.5, 14.5, 21.0, 2.4, 2.7 and 2.7 for inhibition at the location of excitation
(1), on-the-path (2), at the cell body (s), behind excitation (3), on a neighbouring
branch (4) and in a different part of the tree (location 5; see Fig. 5.3A). These strong
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effects can be visualized by recalling our loose analogy between dendrites and water
pipes and reservoirs. Shunting inhibition corresponds to opening a hole in the pipe,
coupled to a water reservoir with the same pressure as in the quiescent pipe system.
If this hole is between the site where water is being injected and the central pool it is
clear that more water will leave the hole on its way to the large somatic sink than if
the hole were to be opened upstream from excitation.

We conclude that if g; is large enough, the on-the-path condition becomes very specific
such that blocking an EPSP is only possible if inhibition is either in the close neighborhood
of the excitatory synapse or between excitation and the cell body. Rall (1964) observed
earlier that in a single unbranched cable, shunting inhibition effectively vetoes more distal
but not more proximal excitation.

Temporal Specificity

So far we only considered the case of stationary synaptic inputs. In the general time-
dependent case, the algebraic egs. 5.8-5.10 are replaced by integral equations

Ve(t) = (ge(t)[Ee — Ve(t)]) * Kee(t) + (9:(t)[E; — Vi(1)]) * Keilt)
Vi(t) = (9e(D)[Ee = Ve(D)]) * Kei(t) + (g:(O)[Ei — Vi(D)]]) * Kii(?) (5.16)
Vs(t) = (ge(t)[Ee — Ve(D)]) * Kes(t) + (g (D)[Es = Vi(D)]) * Kis(t) -

Typically, these equations are solved numerically (Segev and Parnas, 1983; Koch et al., 1983).
The efficacy of inhibition is characterized by a slight generalization of the F" factor of eq. 5.14
(F' is defined as the ratio of the peak amplitude of the somatic EPSP without inhibition to
the peak of the somatic EPSP in the presence of inhibition).

Fig 5.3 shows the dependency of F' on the relative timing between the onset of excitation
and inhibition. Negative delays correspond to inhibition preceding excitation, while positive
delays are associated with inhibition following excitation. As can be seen, the specificity of
shunting inhibition in vetoing EPSPs generalizes from space to time: on-the-path inhibition
can effectively veto excitation if it occurs within about 10 msec of the onset of excitation,
about two-thirds of the membrane time constant. As we discussed in section 3.6, the local
delay D;; (Agmon-Snir and Segev, 1993) specifies the window during which synaptic inputs
can interact with each other. Different locations have different temporal windows associated
with them (e.g. Fig. 3.12), allowing for an operationalized definition of what is meant by
two simultaneous inputs.

The delay between the onset of excitation and optimal inhibition increases with increasing
distance between the two synapses, as expected from the definition of the propagation delay
oin eq. 2.51.

Decreasing the duration of inhibition below that of excitation decreases its effectiveness,
in some cases dramatically. In no case did the F' factor for transient inputs exceed the F
factor for the corresponding stationary case. That is, inhibition appears to be at it most
effective if temporal effects can be discounted.
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Fig. 5.3 demonstrates the on-the-path effect very vividly. Locating inhibition between
the site of the excitatory synapse and the soma can shunt the somatic EPSP by a maximal
factor of 9, while moving inhibition beyond excitation (approximately conserving the distance
between the two synapses) renders inhibition much less effective, with the F' factor dropping
to 1.3 (a reduction of about 7). Yet this specificity only occurs in the presence of large
conductance changes, possibly outside the physiological range (see Table 5.1) and becomes
much less pronounced for smaller values of g;, when the interaction depends more on the
distance between excitation and inhibition.

In summary, the veto effect of inhibition can be strong and specific with respect to spatial
location and relative timing provided the following requirements are fulfilled: (i) inhibition
must have a reversal potential close to the resting potential of the cell, (ii) inhibition should
be close to excitation or on the direct path between excitation and the cell body, (iii) peak
inhibition must be large enough and (iv) inhibition must last (at least) as long as excitation
and their time courses should overlap substantially.

5.1.5 Hyperpolarizing Inhibition Acts Like a Linear Subtraction

As we saw above, in the limit of small synaptic inputs (gef(ee < 1 and ¢,K; < 1), the
action of shunting inhibition on excitation can be characterized as a multiplication with an
offset. Even though the interaction between hyperpolarizing inhibition, such as the GABAp
complex that increases the postsynaptic potassium conductance (reversing close to -100 mV),
and excitation also contains such multiplicative effects, it is more linear due to the direct
contribution the hyperpolarizing battery makes toward the membrane potential. Inspection
of eq. 5.12 reveals that the first two terms in Kj, are proportional to the reversal potential
of the inhibitory synapses. The more negative the inhibitory reversal potential (relative to
Viest), the more these terms will dominate and the more the overall operation will resemble
a linear subtraction.

A physiological instance of such a subtractive inhibition that can be linked to a specific
computation occurs in the fly’s motion detection system. Hassenstein and Reichardt (1956;
Reichardt, 1961) first suggested that the key mechanism underlying the optomotor response
of insects to moving stimuli is mediated by a correlation-like operation. In this scheme, the
output from one receptor is multiplied by the temporally delayed (e.g. low-pass filtered)
output from a neighbouring receptor and then temporally averaged. The component that is
direction selective can be extracted from the component that is independent of the direction
of motion by subtracting the output of two, mirror-symmetric pairs of Reichardt detectors
from each other.

A computational analysis (Egelhaaf, Borst and Reichardt, 1989) of this system predicts
that as the subtraction stage between opposite oriented motion detectors is blocked, the
power of the second-order component of the membrane potential in the cellular output
stage increases. Experiments with picrotoxin, a blocker of GABA 4 receptors confirm this
(Egelhaaf, Borst and Pilz, 1990). Intracellular recordings from large tangential cells in the
lobula plate in the blowfly in combination with pharmacological blockers show that the
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excitatory input is mediated by fast cholinergic synapses while the subtraction relies on
GABAergic synapses that reverse around -75 mV (Borst, Egelhaaf and Haag, 1995; Brotz
and Borst, 1996). A stable resting potential around -50 mV (Fig. 5.4) gives the membrane
enough manovering room in both directions to implement a linear operation of importance
to optomotor behavior in flies.
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-60 i
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Figure 5.4: LINEAR SUBTRACTION IN THE MOTION PATHWAY OF THE FLY
Intracellular recording from a VS cell in the third optic ganglion of the blowfly Calliphora
during motion of a whole-field grating. This stimulus is moved for one second in the pre-
ferred (first black bar) and for one second in the cell’s opposite, or null, direction (second
black bar) past the fly. The resting potential is stable around -50 mV, explaining the more-
or-less symmetric response pattern driven by opposing pairs of Reichardt correlation detectors
(Borst, Egelhaaf and Haag, 1995). Excitation is mediated by fast cholinergic and inhibition
by GABAergic synaptic input onto this cell. Unpublished data from J. Haag and A. Borst.

5.1.6 A Functional Interpretation of the Synaptic Architecture
and Dendritic Morphology: AND-NOT Gates

The specificity of the interaction between excitation and shunting or silent inhibition pro-
vides in principle the substrate for implementing different classes of analog computations
in different dendritic trees. This situation is portrayed in a highly idealized but suggestive
manner in Fig. 5.5 using a logical metaphor (Koch et al., 1982), bearing in mind that these
interactions are continuous and not all-or-none.

In an unbranched cable (Fig. 5.5A), input 4; can inhibit more distal excitatory input
e1,es and ez, while inhibition 73 can only significantly affect e3. If we adopt the logical
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AND-NOT all-or-none operation to characterize this interaction (an output only occurs in
the presence of excitation and no inhibition), such a cable implements the logical expression

[e3 AND — NOT (i; OR i» OR i3)] OR
e; AND — NOT (i; OR i5) OR (e; AND — NOT iy). (5.17)

In other words, the soma receives a significant signal only if e3 is high and not blocked by
i1, 19 or i3, or if ey is high and not vetoed by either i; or 75, or if ¢; is high and not vetoed by
1. Due to the on-the-path effect, the more branched dendritic tree in Fig. 5.5B implements
a different expression,

(e1 AND — NOT 4;) OR (e AND — NOT 4,) OR {[( e5 AND — NOT i3) OR

Thus, the combination of dendritic morphology coupled with specific synaptic circuits con-
spires to create a rich class of nonlinear operations, with different dendritic trees carrying out
different computations. These interactions would be based on voltage-independent AMPA
excitatory synapses and GABA 4 inhibitory synapses.

The “dendritic-tree-as-logic-network” metaphor has been a popular concept that has been
extended to a number of other biophysical situations and logical operators (Segev and Rall,
1988; Shepherd and Brayton, 1987; Shepherd, 1990; Zador, Claiborne and Brown, 1992; see
chapters 12 and 19).

Yet as succinctly summarized by Mel (1994), this simile can be criticized on several
grounds. The principal argument against postulating that specific arrangements of individual
synapses act as logical or analog gates is the great demand that this places on developmental
processes. In order to achieve the precise type of wiring idealized in Fig. 5.5, some learning
mechanism has to guide individual synapses to individual branches in the dendritic tree to
achieve the precise spatial arrangements required. For instance, moving i; in Fig. 5.5B to
the adjacent branch significantly changes the associated logical expression. Thus, the great
specificity of this interaction represents at the same time its own Achilles heel (Mel, 1994).

It is possible, of course, that on-the-path effects are exerted not by individual synaptic
inputs but by groups of synapses as is the case in the distinction between absolute and
relative suppression (Vu and Krasne, 1992). This spatially less precise degree of spatial
interactions places a much reduced burden on developmental processes, since it only specifies
that inhibitory synapses should either be adjacent to the excitatory ones or in a different
part of the dendritic tree.

On biophysical grounds, it is unclear how specific the interaction for between excita-
tory and inhibitory synapses actually is. As illustrated in Table 5.1, if the amplitude of
the inhibitory conductance change is small, little specificity results. Furthermore, during
physiological conditions, the cell potential may never be at V,.s because the cell receives
tonic excitatory input. Under these conditions, the distinction between hyperpolarizing and
shunting inhibition is much smaller than we assume here, since both reverse negative to the
“effective” resting potential.
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Figure 5.5: IMPLEMENTING AND-NOT LOGIC IN A DENDRITIC TREE
An idealized, binary view of the continuous nonlinear interactions occurring between ex-
citation and shunting inhibition.  Inhibitory inputs (rectangles) veto more distal exci-
tatory inputs (circles), but have only a marginal effect on inputs more proximal to
the soma, thereby approximating a logical AND-NOT gate. The two distinct den-
dritic architectures, coupled with specific synaptic wiring, implement very different log-
ical expressions (see the expressions 5.17 and b5.18). From Koch et al,  (1982).

5.1.7 Retinal Directional Selectivity and Synaptic Logic

Direction selectivity of retinal ganglion cells is one example of a complex nonlinear operation
that appears to use synaptic logic (Koch, Poggio and Torre, 1986). A subset of ganglion
cells in the vertebrate retina fire vigorously in response to motion of a spot of light in one
direction, the preferred one, but are silent to motion in the opposite, the null direction. The
classical experiments of Barlow and Levick (1965) inferred that synaptic inhibition—now
known to be GABAergic—plays a critical role, by preventing the cell to respond in the
null direction. More recent work on rabbit ganglion cells reveals an additional facilitatory
direction-selective component (Grzywacz and Amthor, 1993).

A popular model for the biophysical basis of direction-selectivity is nonlinear synaptic
interaction between cholinergic excitation and GABAergic inhibition mediated by GABA 4
receptors in the dendritic tree of ganglion cells (Torre and Poggio, 1978; Koch et al., 1982,
1983, 1986). Intracellular recordings from turtle and fog direction-selective ganglion cells
support activation of shunting inhibition in the null direction (Marchiafava, 1979; Watanabe
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and Murakami, 1984). The very complex dendritic morphology of direction-selective ganglion
cells (Oyster, Amthor and Takahashi, 1993) provides an ideal substrate for numerous local
and nonlinear veto-operations of the type schematized in Fig. 5.5B.

Yet in some ganglion cells, direction selectivity is maintained or even reversed in the pres-
ence of pharmacological blockers of GABA. Patch-clamping the dendrites of turtle ganglion
cells revealed an excitatory input that is already direction-selective (Borg-Graham, 1991b).
Furthermore, motion in the preferred direction causes a much larger increase in the input
conductance that null direction motion, in conflict with the models presented here in which
the exact temporal relationship between excitation and inhibition shapes the postsynaptic
response but the total conductance change remains invariant to the direction of motion (e.g.
Fig. 5.3).

It thus appears that at least some fraction of the direction-selective response is computed
presynaptically, most likely in cholinergic neurons possessing a unique dendritic branching
pattern called starburst amacrine cells (Masland, Mills and Cassidy, 1984). In the rabbit,
starburst amacrine cells are well situated to provide synaptic input from their distal dendrites
to directionally-selective ganglion cells via graded, dendro-dendritic synapses (Vaney, Collin
and Young, 1989). Their distinctive dendritic branching pattern is especially suited for
local generation of directionally-selective outputs, such that direction-selectivity could be
implemented using a combination of nonlinear synaptic interaction and inhibitory kinetics
that are slower than that for excitation (Borg-Graham and Grzywacz, 1992). In the second
scheme, excitation is always trailed by a slower inhibitory wave—if the activated synaptic
input is moving towards a site of synaptic output (in this case a dendritic tip) excitation
reaches the output before the inhibtion catches up. On the other hand, if the input is moving
away from the output the inhibition, interposed between the excitation and the output,
effectively shunts the excitatory current, preventing it from depolarizing the output zone (see
also Rall, 1964). Yet, biophysical simulations of amacrine cells suggest that the non-linear
interaction of excitation and inhibition probably is the dominant mechanism generating a
directional selective response under normal conditions (Borg-Graham and Grzywacz, 1992).

The final verdict is not in. It appears likely that even such a simple operation as distin-
guishing the direction of a moving stimulus is implemented using a plurality of biophysical
mechanisms acting at several sites, some requiring inhibition and some not (Amthor and
Grzywacz, 1993). Such redundancy might be necessary in the face of demands that the cir-
cuitry wire itself up during development and retain its specificity in the face of a constantly
varying environment.

5.2 Nonlinear Interaction Among Excitatory Synapses

What about the interaction expected between two excitatory (with synaptic reversal poten-
tial F, and stationary conductance increases ¢g; and g¢5) voltage-independent synaptic input?
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If both synapses are co-localized, the somatic EPSP will be of amplitude

(gl + g2)EeKes _ glEeKes g2EeKes (5 19)
1 + (91 + gQ)Kee 1 + (gl + gZ)Kee 1 + (gl + gZ)Kee

In the opposite case, when two sites 1 and 2 are electrotonically decoupled, i.e. Kis — 0,
the somatic potential is given by

g E K, n 92 B Ky
14+gKn 14 92Ky

(5.20)

Assuming that f(ee ~ Ki; ~ Ky and f(es ~ f(ls ~ f(gs (i.e. 1 and 2 have the same
electrotonic properties), it is clear that the somatic EPSP is smaller if both synapses coincide
(eq. 5.19) then if both are far apart (eq. 5.20). The same results holds true even if the coupling
term Ky is non-zero and transient inputs are considered (Koch et al., 1982). The reason
for this sublinear addition is simply the fact that as the postsynaptic potential increases,
the amount of current flowing through voltage-independent excitatory synaptic channels
decreases (Rall, 1977).

Experimental studies of these predictions have been scant, with the large motoneurons
providing a favorite preparation. Two earlier studies (Burke, 1967; Kuno and Miyahara,
1969) had concluded, based on an indirect inferrence, that excitatory inputs interacts sub-
linearly when located somewhere in the distal dendritic tree. In the above mentioned Skyds-
gaard and Hounsgaard (1994) experiment, glutamate was locally applied to different parts
of the dendritic tree of turtle motoneurons from two independent iontophoresis electrodes.
At the cell’s resting potential they observed linear summation at the soma (see also Lang-
moen and Andersen, 1983) which turned supralinear as the membrane was depolarized by
the recording electrode (most likely due to amplifying voltage-dependent membrane conduc-
tances). Yet basic biophysics implies nonlinear saturation due to the conductance-increasing
nature of synaptic input. Is it possible that synaptic saturation is always compensated for
by voltage-dependent outward currents distributed in the dendritic tree? And if so, why?

5.2.1 Sensitivity of Synaptic Input to Spatial Clustering

As emphasized in chapter 4, in the central nervous system many, if not most, neurons receive
synaptic input from a mixture of voltage-independent AMPA and voltage-dependent NMDA
ionotrophic synapses.

For instance, a major role for NMDA input in cat visual cortex is supported by experi-
ments that blocked NMDA responses using the pharmacological agent APV. This procedure
caused the visual response of neurons whose cell bodies are located in the upper three layers
to be either strongly attenuated or eliminated altogether, while neurons in the input layer
4 could still be visual activated (Miller, Chapman and Stryker, 1989; Fox, Sato and Daw,
1990; Daw, Stein and Fox, 1993). Thus, NMDA distribution is most likely not homogeneous
but specific.
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Such a voltage-dependent excitatory input can implement a multiplicative-like interac-
tion: while the EPSP produced by a single NMDA synapse might not be strong enough
to allow current to flow through the associated channels, two or more simultaneous ac-
tive NMDA inputs could depolarize the potential sufficiently to relieve the M ¢?>* mediated
blockage and lead to a much larger depolarization (Fig. 4.8; Koch, 1987). Motivated by the
possibility that such interactions can instantiate a specific class of computations underly-
ing certain forms of learning, Mel (1992, 1993, 1994; Mel and Koch, 1990; see also Brown,
Zador, Mainen and Claiborne, 1992) initiated a detailed biophysical investigation of synap-
tic integration in the dendritic tree of cortical pyramidal cells on the basis of three different
mechanisms: NMDA receptors, calcium and sodium-mediated active dendritic membrane
conductances. In this chapter we focus on the interaction occurring in a passive dendritic
tree among NMDA synapses, deferring the more complex set of events that can occur in a
dendritic tree with voltage-dependent conductances to section 19.3.4.

The basic question Mel addresses is the following: what is the sensitivity of excitatory
input to spatial clustering in the postsynaptic neuron? In particular, are spatially adjacent
synapses in a passive dendritic tree more or less effective than the same number of synapses
spread throughout the tree?

To answer these questions, Mel (1992) models the layer 5 pyramidal cell from cat visual
cortex (reconstructed by Douglas and colleagues, 1991), with a passive dendritic tree and a
cell body that contains the two basic Hodgkin and Huxley currents, Iy, and Ik, necessary for
spike initiation (and that are described exhaustively in the following chapter). Mel randomly
distributes 100 synapses in clusters of k£ over the entire dendritic tree, like sprinkling salt
over food. Fig. 5.6 illustrates this procedure for cluster size k =1 and 7: in the first case 100
synapses are placed at random within the dendritic tree while in the second case clusters of
seven synapses each (plus one cluster of two synapses) are randomly assigned to 14 locations
in the tree. In the absence of any NMDA input, each synapse is located onto a dendritic
spine and treated as a fast, glutamergic input of the AMPA type. In the alternative case,
90% of the postsynaptic conductance increase is of the NMDA type, using the membrane
potential and time dependence of eq. 4.6 (Fig. 5.7). The NMDA-mediated synaptic current,
the product of the driving potential (which decreases for increasing levels of membrane
depolarization) and the conductance change (which first increases and subsequently saturates
with increasing V},,), increases to about -30 mV potential, after which it decreases and
reverses sign at the synaptic reversal potential of 0 mV. The remaining 10% of the synaptic
conductance is of the AMPA type.

All synapses (whether belonging to the same cluster or not) are activated independently
of each other at a mean rate of 100 Hz. As a measure of cell response, Mel considers the
number of spikes triggered over a 100 msec period. Using the peak somatic potential or
the time integral of the somatic potential (in the absence of a somatic spiking mechanism)
gives results that are little different. In the passive cell with voltage-independent inputs,
the somatic response following activation of 100 synapses randomly located throughout the
dendritic arbor is much bigger than the response following activation of 14 clusters of 7
neighbouring synapses. Indeed, the former situation triggers 4 spikes while the latter none
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200 ym

Figure 5.6: CELLULAR RESPONSE TO NON-CLUSTERED AND CLUSTERED INPUT
In the study by Mel (1992), the layer 5 pyramidal cell is festooned with 100 fast, ex-
citatory synapses that are either spread out over 100 randomly selected individual loca-
tions (left side) or clustered at 14 randomly chosen locations of 7 synapses each (right
side). In a passive dendritic tree and in the absence of NMDA input, clustered synap-
tic activity lead to a reduced somatic response compared to the case when synapses are
dispersed. For synaptic input of the NMDA type, cooperativity exists, such that spatial
clustering causes an enhanced somatic response. From B. Mel, personal communication.

(even though here the local response is larger; but, of course, fewer clusters contribute toward
the somatic excitability).

If the cell’s membrane is endowed with NMDA channels, it will respond selectively to
patterns of stimulation in which activated synapses are spatially clustered rather than uni-
formly distributed across the tree (Fig. 5.7). The cell fails to spike in response to random
activation of 100 NMDA “isolated” synapses to a 100 Hz input, while it fires at an effective
rate of 20 Hz if the same 100 synapses are clustered in ten locations (Mel, 1993).

This preference for spatial clustering relative to a more uniform synaptic distribution
for NMDA input is confirmed statistically by generating a large number (either 50 or 100)
of randomized synaptic distributions of the type shown in Fig. 5.6 and averaging over the
results for cluster size ranging between 1 and 15. The effect is clear and unambiguous
(Fig. 5.8). Due to synaptic saturation, non-NMDA input will always be more effective when
spread out in space, while the converse is true for NMDA input: as the size of the cluster
is increased (and even though the number of cluster sites goes down since the total number
of synapses remains fixed) the cellular response increases. For very large cluster sizes the
attenuating effects of synaptic saturation begin to offset the excitatory effects of the NMDA
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Figure 5.7: DETAILS OF THE CELL’S RESPONSE TO NMDA SyNAPTIC INPUT
Membrane potential at the synapses (A;, By) and at the soma (A3, B3) in response to 100 uni-

formly distributed synapses (upper panels) and to 10 clusters of 10 synapses. 90% of the synaptic

conductance change is of the NMDA type, the remainder being voltage independent. Each synapse,

whether within a cluster or not, is independently activated by a Poisson process of 100 Hz rate.

Because in the first case, synapses act “alone,” the average synaptic conductance (A) and synaptic

current (Ay4) remain modest. If, however, synapses can “cooperate” due to spatial proximity the

effective synaptic conductance (Bs) and synaptic current flowing (B4) can be much larger, inducing

the cell to fire at 20 Hz.

The synaptic conductance changes scale inversely with the local input resis-

tance, with high g,eqr values at the soma and low ones in the distal dendritic tree. From Mel (1993).
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While the exact shape of the curve in Fig. 5.8B, such as the most effective cluster size,
depends on the details of the biophysical setting, the overall shape does not. Its convex shape
is due to cooperativity for small cluster size and synaptic saturation for large cluster sizes
(i.e., the subsynaptic potential approaching the synaptic reversal potential) and is extremely
robust to parameter variations (Mel, 1992).

We conclude that due to the voltage-dependency of the NMDA receptor complex, co-
operativity pays off, in the sense that a cluster of adjacent synapses will lead to a larger
postsynaptic response than if the synapses are randomly distributed throughout the tree.
As opposed to the more demanding spatial accuracy in positioning excitation and shunting
inhibition to obtain the AND-NOT effect discussed in section 5.1, cluster sensitivity does
not depend on the exact positioning of synapses within a cluster. Thus, it places much less
premium on development mechanisms to carefully “wire” up the synaptic architecture of the
cell. Mel (1992, 1993) made no special assumptions about temporal synchronization among
synaptic inputs: if input to a cluster arrives as a highly synchronized wave of excitation, it
can be much more powerful than if spread out over time. In this sense, his analysis represents
a worst-case scenario.

The sensitivity to spatial clumping of synaptic input is present under a broad parameter
regime, in particular in the presence of calcium or sodium conductances in the dendritic tree
(as we will discuss in more detail in chapter 19). Cluster sensitivity appears to represent a
neurobiologically plausible mechanism to confer nonlinear, multiplicative properties to local
subunits in the dendritic tree. Such a subunit could be more rigorously defined as a region of
the dendritic tree within which synaptic interaction is strong and nonlinear, while interaction
between two or more subunits would be linear (Koch et al., 1982).

5.2.2 Cluster Sensitivity for Pattern Discrimination

Mel (1992) provides a illustrative example of how the nonlinear, cooperative interaction
of NMDA synapses can implement a high-level computation, discriminating one pattern
amongst many others.

The basic idea is straightforward: if a set of synaptic afferents coding for pattern “A”
terminate in a synaptic cluster onto a particular neuron, and a large set of patterns “B”
maps onto a random collection of synapses spread throughout the cell, the cell can be said
to recognize or discriminate pattern “A,” since activating the synaptic cluster makes the cell
fire, while the cellular response to activation of the randomly distributed synapses will be
negligible. This is illustrated by showing how a neuron can discriminate complex patterns,
here a set of 100 black-and-white photos from a summer vacation.

The coding of the gray-scale pictures is accomplished in the following manner. Fifty
randomly chosen images, designated as training set, are convolved with four oriented Gabor
filters on a 64 by 64 pixel grid, resulting in a population of 16,384 orientation-selective
visual units. Each one of these oriented units is assumed to make a single, all-or-none
output synapse onto the layer 5 pyramidal cell in Fig. 5.6: activity of one such unit would
represent the presence of a particular oriented edge at that location in the image. Out of this



Synaptic Interactions 137

A) B)
Passive Dendrites NMDA Synapses
6 6
[
3 5 5
£
1 4
o 4
o
~— 3 3 b
- )
3 2 21
=
& 1 1
0 . . . . . . 04 . . . . . .
1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15
Cluster Size Cluster Size

Figure 5.8: CLUSTER SENSITIVITY IN A PASSIVE DENDRITIC TREE
The average number of spikes within a 100 msec period using the zero NMDA (A) or the high
NMDA (B) conditions as a function of cluster size. In each case, 100 synapses are placed
on spines in 100/k clusters randomly distributed throughout the passive tree (with the prob-
ability density uniform in dendritic length). This procedure is repeated either 100 (for A)
or 50 (for B) times for cluster sizes between 1 and 15 and the cellular response averaged.
Due to the cooperativity of NMDA synapses, spatial clustering increases the postsynaptic re-
sponse. This basic effect is very robust to parameter variations. Modified from Mel (1993).

large population, the 80 most active units are selected—the output of all other units being
suppressed—and are mapped onto 10 cluster of 8 neighbouring synapses known to trigger at
least one spike. This process is repeated for each of the 50 training image, except that a visual
unit, once mapped onto the cell, is not remapped if it occurs in a subsequent training image.
Following this “learning” procedure, the remaining unused orientation-selective units (about
12,000) are randomly mapped onto individual synaptic sites. Although a caricature of what
is expected to occur in visual cortex, this procedure assures that each of the 50 images is
mapped onto at most (because of the potential overlap among images) 80 clustered synapses.

As seen in Fig. 5.9, the cell responds to any one of the 50 training images with an
effective spike frequency of 12.5 Hz, while the 50 randomly assigned test images fail to bring
the cell above threshold. Mel (1992) also uses three sets of partially corrupted training
images as input to the pyramidal cell. In the “Half/Half” stimulation paradigm, half of the
vector components coding for one training image were swapped with half of the components
encoding another training image. In a linear perceptron, the superposition of two training
patterns cannot be distinguished from a single training pattern. In this case the cell’s
response is significantly reduced compared to its response to a full training pattern (by
about 33%; Fig. 5.9). The same performance is seen if 20% of a training image is randomly
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Figure 5.9: THE NMDA ENDOWED PYRAMIDAL CELL AS PATTERN DISCRIMINATOR
Average response (over a 100 msec period) of the pyramidal cell to five types of images mapped
onto its synapses. The largest response is to the 50 training images and the smallest to the
remaining 50 test images. In the intermediate cases, training images are partially corrupted
(here indicated using a pictorial representation). In the “Half/Half” case, half of the features
of one image are combined with half the features of another image. Note the significantly re-
duced response to the superposition of two training patterns, direct evidence of the nonlin-
ear pattern discrimination ability of a neuron endowed with NMDA input. In the two other
case, either 20% or 50 % of the image is replaced by random features. ;From Mel (1992).

corrupted. If much more noise is added, the cell only responds weakly.

The performance of the pyramidal cell endowed with NMDA synapses is quite remarkable:
it can be trained to respond to any one of fifty high-dimensional vectors, discriminating
them from random input or vectors not beloging to the training set. The probability of
misclassification is 14%, the majority of which are false negatives, that is training images
not recognized as such. Given the highly dispersed three-dimensional geometry of dendritic
and axonal arbors and the rich combinatorics that are possible in choosing particular spatial
arrangements among 10,000 afferent synapses, the true discrimination capacity of even a
single pyramidal cell could be much greater than demonstrated here (Mel, 1993, 1994; see
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also Brown et al., 1991a).

To what extent pyramidal cells in cortex implement such a scheme is difficult to ascertain
since the detailed microanatomy of the origin of all synapses would not be sufficient to
answer the question. Yet this mechanism predicts the existence of a learning rule that favors
the placement of simultaneously active synapses in clusters on the dendritic tree, while
uncorrelated synapses should have no specific spatial relationship to each other. Biophysical
experiments involving synaptic plasticity should uncover such a rule that would lead to the
clustering exploited here for computational purposes.

The degree of specificity required is less than that of the AND-NOT type of interaction
discussed in the beginning of this chapter. Yet similar to the interaction between excitation
and inhibition, clustering effectively fractionates the dendritic tree into many small subunits,
within which nonlinear interactions take place.

5.3 Synaptic Microcircuits

Excitation and inhibition by individual synapses usually have little computational signifi-
cance by themselves. It is the assembly of synapses into specific patterns of connectivity
that gives rise to identifiable building blocks that can be found throughout the nervous sys-
tem. Shepherd (1972, 1978) has termed such specific synaptic arrangements that have an
spatial extent measured in micrometers synaptic microcircuits. (Fig. 5.10). Any particular
neuron may have dozens or hundreds of such microcircuits. Very often they will include
dendro-dendritic synapses, that is fast, excitatory or inhibitory chemical synapses from one
dendrite of the presynaptic cell onto a dendrite from a different, postsynaptic, cell. Ex-
amples of such circuits abound in both the central nervous system of both vertebrates and
invertebrates (for an excellent and detailed account of microcircuits in the mammalian brain
see the monograph by Shepherd, 1990).

Well-known examples include dendro-dendritic interactions among spiking and non-spiking
interneurons in sensory-motor system of the locust (Laurent and Burrows, 1989; Laurent,
1990), synaptic arrangements among the non-spiking neurons in the vertebrate retina (Dowl-
ing, 1979, 1987; Sterling, 1990; Fig. 1.5), the reciprocal dendro-dendritic inhibition occurring
among the dendrites of the mitral cells and the spines of the granule cells in the mammalian
olfactory bulb (Rall , Shepherd, Reese and Brightman, 1966; Rall and Shepherd, 1968; Woolf,
Shepherd and Greer, 1991a,b) and the spine-triad circuit in the thalamus (Hamos, Van Horn,
Raczkowski, Uhlrich and Sherman, 1985; Koch, 1985; Fig. 12.8). What characterizes these
synaptic arrangements is that they involve at least one excitatory and one inhibitory synapse
on a very compact spatial scale, operate at the millisecond time scale and exist in very large
numbers (Shepherd, 1972, 1978; Shepherd and Koch, 1990).

Curiously, synaptic microcircuits do not appear in any significant numbers in mature
cortical structures. To a good first approximation, fast excitatory and inhibitory traffic is
mediated from the presynaptic axon of one cell to the postsynaptic dendrites of another cell
without the involvement of higher order synaptic arrangements nor the dendro- dendritic
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Figure 5.10: SYNAPTIC MICROCIRCUITS MEDIATING DIFFERENT TYPES OF INHIBITION
Two types of synaptic microcircuits that mediate two types of inhibition in the vertebrate nervous
system. (A) The spine-triade consists of an afferent (a) making an excitatory synapse onto a
dendrite or spine (b) as well as onto an interneuron (c). The interneuron in term inhibits, via a
dendro-dendritic synapse, the postsynaptic neuron (b). This feedforward inhibition is common in
the retina and thalamus (see section 12.3.4 and Fig. 12.8). (B) Recurrent inhibition is implemented
by a relay cell (a) that excites an interneuron (b). This interneuron inhibits, via a dendro-dendritic
synapse, the original relay cell. Dendro-dendritic reciprocal inhibition occurs between mitral and
granule cells in the olfactory bulb. Such microcircuits that are specified at the micrometer level are
common in structures outside cortex proper and in invertebrates. From Shepherd and Koch (1990).

synapsesZ.

5.4 Recapitulation

The fact that a synaptic input changes the conductance in the postsynaptic membrane
in series with a synaptic battery and does not correspond to a constant current source
ultimately implies that synaptic inputs interact with each other via the membrane potential.
In particular, the somatic potential in a passive tree in response to two or more inputs is not
equal to the sum of the individual synaptic components. We explored the computational
consequences of this in two cases.

The interaction between voltage-independent non-NMDA excitatory input and shunting
inhibition (i.e. when E; reverses close to the cell’s resting membrane potential), in the
subthreshold domain can mediate a veto operation that is specific in space and time: if
inhibition is adjacent to the excitatory synapse or on-the-path between excitation and the

2Tt could be argued that an exception to this rule are the small fraction of dendritic spines that carry both
an excitatory as well as an inhibitory synaptic profile; it is doubtful, though, whether such arrangements
have a specific function (section 12.3.3).
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cell body and if their time-courses overlap, inhibition can effectively suppress the effect of
excitation. This implies that specific synaptic arrangements in a dendritic tree can imple-
ment logic-like AND-NOT operations, possibly one of the crucial nonlinearities underlying
direction selectivity in retinal ganglion cells.

The specificity of synaptic interaction represents at the same time also its greatest weak-
ness, in the sense that it places great demands on developmental mechanisms to precisely
guide synapses and dendrites during development. A more plausible synaptic arrangement
could be implemented at the level of synaptic populations: if excitatory and inhibitory
synapses are co-localized onto the same part of the dendritic tree, excitatory input can al-
ways override any inhibitory influence. Conversely, if inhibition is at a different site, for
instance close to the spike initiating zone, and excitation at more distal sites, then any
excitatory input can always be vetoed by inhibition. These two types of synaptic place-
ments might instantiate different kinds of suppressive behaviors: under certain conditions
the threshold for initiating a reflex should be elevated (relative suppression) while under
others the behavior needs to be totally abolished (absolute suppression).

If GABAergic inhibition has a reversal potential much below the membrane resting poten-
tial, as in the fly tangential interneurons, inhibition tends to act akin to a linear subtraction.

A more plausible mechanism to implement multiplicative behavior involves NMDA synapses
clustered over the dendritic tree. When clusters of adjacent non-NMDA synapses are ran-
domly sprinkled around the dendritic tree of a pyramidal cell, their activation causes a
smaller cellular response then when the synapses are isolated from each other, a conse-
quence of synaptic saturation. A very different behavior is obtained with clusters of voltage-
dependent NMDA synapses. Because of their cooperative nature, clusters of 6 to 10 adjacent
NMDA synapses are much more effective than the same number of synapses by themselves.
A dendritic tree endowed with such synapses can be used to implement a very efficient non-
linear pattern discriminator that is robust to the presence of dendritic nonlinearities, while
also serving as a plausible biophysical mechanism for multiplication required for a host of
computations, such as motion, binocular disparity and tabular look-up storage.

Both case studies imply that the dendritic tree, rather than just performing a filtering
operation onto the synaptic input, as suggested by linear cable theory presented in chap-
ters 2 and 3, can be partitioned into numerous spatial subunits. Within each such subunit,
synaptic inputs interact nonlinearly, while the interaction between two or more subunits is
approximately linear.

Finally, we mentioned the concept of a synaptic microcircuit, pioneered by Shepherd
(1978, 1990). These usually involve a combination of one or several excitatory and inhibitory
synapses with a predilection for a specific arrangement among two or three neurons and are
common in extracortical structures such as the retina, the olfactory bulb and the thalamus
and in invertebrates.



